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Abstract

Hand-wrist radiographs are used in bone age prediction. Computer-assisted clinical decision support systems offer solutions
to the limitations of the radiographic bone age assessment methods. In this study, a multi-output prediction model was
designed to predict bone age and gender using digital hand-wrist radiographs. The InceptionV3 architecture was used as the
backbone, and the model was trained and tested using the open-access dataset of 2017 RSNA Pediatric Bone Age Challenge.
A total of 14,048 samples were divided to training, validation, and testing subsets with the ratio of 7:2:1, and additional
specialized convolutional neural network layers were implemented for robust feature management, such as Squeeze-and-
Excitation block. The proposed model achieved a mean squared error of approximately 25 and a mean absolute error of 3.1
for predicting bone age. In gender classification, an accuracy of 95% and an area under the curve of 97% were achieved.
The intra-class correlation coefficient for the continuous bone age predictions was found to be 0.997, while the Cohen’s
k coefficient for the gender predictions was found to be 0.898 (p <0.001). The proposed model aims to increase model
efficiency by identifying common and discrete features. Based on the results, the proposed algorithm is promising; however,
the mid-high-end hardware requirement may be a limitation for its use on local machines in the clinic. The future studies may

consider increasing the dataset and simplification of the algorithms.
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Introduction

Radiographic skeletal maturity indicators can be found in the
bones of the hand and wrist, cervical vertebrae, knee, hip, and
foot. Several types of radiographic data contain such maturity
indicators on the image to be used in skeletal maturity assess-
ment, based on the imaging method [1]. Skeletal maturation
is important in orthopedics, pediatrics, and orthodontics, and
more. Evaluating growth and development may be critical in
clinical decisions regarding treatment alternatives [2]. Sim-
ilarly, forensic sciences may benefit from skeletal maturity
assessment to obtain evidence for tasks such as victim iden-
tification [3].

Hand-wrist maturation (HWM) assessment is a widely
accepted method for evaluating skeletal maturation using
specific maturity indicators of the hand and wrist bones
in hand-wrist radiographs (HWRs). Several HWM meth-
ods were reported in the literature, based on two main
approaches: the atlas method, in which sample images are
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already provided for each maturation stage for an overall
comparison, or the region of interest method, suggesting
investigation of the specific bone maturity indicators on spe-
cific bones. Greulich and Pyle (GP) and Tanner-Whitehouse
(TW) reported separate atlases for HWM in 1959 and 1962,
respectively, and the latter was further revised as TW2 in
1975 and TW3 in 2001 [4, 5]. Alternatively, the Fishman
method focuses on specific bones in the first, third, and fifth
phalanges and the radius bone to determine the maturation
stage based on the morphology of the specific indicators [6].
Cervical vertebra maturation (CVM) using lateral cephalo-
grams is another method of radiographic skeletal maturation
assessment [7, 8].

Traditional radiographic bone age analysis is performed
in the clinic by human observers. Analyses require spe-
cially trained personnel, and the results may be influenced
by several factors such as the operator experience and the
subjectivity. Due to inter-observer variance, the repeatability
and the reproducibility of the radiographic bone age deter-
mination methods can be considered questionable [9—11].
In addition to the radiographic techniques, various clinical
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and laboratory tests can be performed in the analysis of
skeletal maturation. However, in reliability studies of the
relevant methods, it is commonly recommended that they
should not be used alone but combined with other techniques
as adjunctive. Although methods based on HWRs are com-
monly accepted, it is difficult to interpret due to the complex
structure of the hand bones. For this reason, in addition to
radiography equipment for image acquisition, the need for
trained clinicians to evaluate the image is also a limitation of
the technique to be used with different tests [12, 13]. Increas-
ing standardization in radiographic bone age analysis has
been a common goal in research for years.

Modern artificial intelligence (AI) technologies intro-
duced in the 1950s with a common question of the health
professionals and the engineers: “Can machines think?” The
earliest systems were developed as rule-based expert systems
and further progressed with advances in computer technolo-
gies [14, 15]. Machine learning (ML) algorithms are trained
with provided datasets to establish a mathematical model
between input and output values. Such data mining tools
can be used to process digital medical data and provide sug-
gestions based on the model architecture [16]. Tajmir et al.
conducted a study to evaluate the effect of computer-aided
skeletal bone age assessment and reported that radiographic
bone age assessment with software assistance was found to
be superior when compared to a single observer or the soft-
ware alone [17].

Research on the use of relevant technologies in radio-
graphic bone age analysis has been ongoing for a long time.
In 1992, Tanner and Gibbons developed a computer-assisted
system (CASAS) for HWM assessment. The design included
digitizing analog radiographs using a video camera operated
according to a template, and then computing the similari-
ties with the atlas images. Total processing time, including
the image capturing and the computing, was reported to be
between 5 and 15 min, depending on the number of bones,
and was suggested as useful for inexperienced users in HWM
[18]. The Radiological Society of North America (RSNA)
organized the Pediatric Bone Age Machine Learning Chal-
lenge in 2017 and provided 14,236 HWRs labeled according
to the GP method. Accordingly, the highest-ranking mod-
els’ architectures were based on InceptionV3, ResNet-50,
and a custom convolutional neural network (CNN) algorithm
developed with Ice Module [19-21].

Materials and Methods

This section outlines the materials, datasets, and method-
ological framework employed to develop and evaluate a
multi-output prediction model for skeletal maturity and
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gender assessment using radiographic images. Leveraging
advanced deep learning techniques and robust datasets, the
study integrates established architectures and data processing
strategies to achieve reliable and accurate predictions. The
following subsections detail the specific approaches, includ-
ing the use of transfer learning with InceptionV3, the dataset
utilized, and the overall methodology.

InceptionV3 Integrated with Transfer Learning

Before delving deeply into the framework of InceptionV3
powered by transfer learning, a brief literature review is pre-
sented.

InceptionV3 combined with transfer learning has attracted
the attention of researchers in recent years due to its ability
to achieve high performance on a small range of datasets.
Zang [22] achieved a high-precision classification of five
representative snakes, and Lin et al. [23] completed the clas-
sification of the German Traffic Sign Recognition Standard
(GTSRB). Li et al. [24] successfully established the clas-
sification of lymph node metastasis in colorectal cancer.
Meanwhile, Mednikov et al. [25] adopted the related archi-
tecture for an effective classification of the breast lumps.

InceptionV3

The Inception algorithm has a similar architecture to its pre-
decessor, the GoogLeNet algorithm proposed by Google in
2014, which not only reduces the amount of network param-
eters, but also increases the network depth. Hence, it is
widely used in image classification tasks. As the core of
the GoogLeNet network is similar to the Inception network
structure, the GoogLeNet network is also called the Inception
network [26]. GoogLeNet architecture has several variants,
which are mainly divided into InceptionV1 (2014), Incep-
tionV2 (2015), InceptionV3 (2015), InceptionV4 (2016), and
Inception-ResNet (2016).

Typically, the Inception module has one maximum pool-
ing and three distinct convolution layers. Following the
convolution process, the channel is aggregated for the net-
work output of the preceding layer, as a nonlinear fusion is
subsequently carried out. By doing this, overfitting may be
avoided, and the network’s ability to expression and adapt-
ability to various scales can be enhanced. The Inception
network structure is displayed in Fig. 1, In contrast to Incep-
tion V1 and V2, the InceptionV3 network structure splits
huge volume integrals into smaller convolutions using a
convolution kernel splitting technique. A 3*3 convolution,
for instance, can be divided into 3*1 and 1*3 convolutions
(Fig.2) [27]. The splitting method can be used to reduce the
number of parameters, which will speed up network training
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Fig. 1 Inception network
structure
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by reducing the computational cost and improve the process
of extracting the spatial features.

Transfer Learning

The main characteristics of deep learning models are that
model development requires a high volume of data and, in
case of insufficient data, under-fitting can occur. Transfer
learning has been offered by scholars as a way to train with
deep learning on a small dataset [28]. With just a little dataset,
precise and effective picture classification is possible thanks
to transfer learning’s learning capabilities.

The transfer learning method is used to pre-train a strong
performance model on ImageNet (1.2 million images with
1000 categories) and learn the characteristics of the ImageNet
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dataset in the event that there is not enough training data for
an upcoming task. In order to guarantee that your model
receives the previously learnt features and produces supe-
rior results, it is recommended that you initialize the weight
parameters that ImageNet pre-trained in your model. After
exploring the methods discussed earlier, this study focuses on
constructing a network model using InceptionV3 to predict
bone age and gender from radiographic images. The model is
initialized with pre-trained weights from ImageNet and then
trained on the 2017 RSNA Pediatric Bone Age Challenge
dataset. This strategy leverages the pre-trained features to
achieve strong classification performance on the relatively
small RSNA dataset.

A similar approach was explored by Lee et al. [29], who
developed a fully automated pipeline for bone age assessment
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using transfer learning with ImageNet-pre-trained CNN.
Their model incorporated preprocessing, segmentation, and
fine-tuning steps, achieving high accuracy for both male and
female cohorts on radiographic images. Unlike our method,
which jointly predicts bone age and gender in a multi-output
model, their system handled gender by splitting the data
into male and female cohorts rather than directly predicting
gender. Nonetheless, both studies highlight the effectiveness
of transfer learning in medical imaging tasks with limited
data. InceptionV3 is supported by its demonstrated ability
to efficiently extract multi-scale features and maintain com-
petitive accuracy while requiring reasonable computational
resources, making it well-suited for multi-output prediction
in this domain.

Data

In this study, the open-access source of 2017 RSNA Pediatric
Bone Age Challenge was utilized, which contains pediatric
HWRs for bone age assessment, along with data labels of
bone age and gender information for each sample [19].
The dataset was divided into three subsets: 70% for train-
ing (9472 images), 20% for validation (3152 images), and
10% for testing (1424 images). Gender outputs were con-
verted to a binary format, with males represented as 0 and
females as 1. To prevent overfitting, data augmentation was
applied to the training and validation subsets using Ten-
sorFlow’s ImageDataGenerator. The augmentation pipeline
included a range of transformations such as random rota-

tion (up to 10 degrees), horizontal flipping, width and height
shifting (up to 20%), shearing (up to 20%), and zooming
(up to 20%). These operations helped introduce variabil-
ity and improve model robustness. As a result, the number
of training images increased from 9472 to 10,472, and the
validation set increased from 3152 to 4152. The test set
remained unchanged at 1424 images. This augmentation
approach improves the model’s generalization ability and
sustains robust performance on unseen data. Additionally,
preprocessing using InceptionV3’s preprocessing function
was employed to normalize pixel values, ensuring consis-
tency with the pre-trained model’s input expectations. Since
data augmentation is beneficial only for training, the test
set remained unaltered to ensure an unbiased evaluation of
model performance. Furthermore, a custom image generator
was implemented to handle the dual-output prediction for-
mat, ensuring the correct structure of bone age regression
and gender classification labels.

Prediction Methodology

The InceptionV3 architecture was used as the backbone for
the developed multi-output prediction model, which utilizes
pre-trained weights from Google’s ImageNet database. The
transfer learning approach allows to leverage the extensive
feature extraction capabilities of InceptionV3, which has
been trained on a vast array of images, thereby providing
a solid foundation for this specific task of predicting both
bone age and gender from radiological images Fig. 3.
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To adapt the InceptionV3 model for dual-output pre-
dictions, the architecture was augmented with specialized
CNN layers tailored for enhanced feature extraction. A key
enhancement is the integration of a Squeeze-and-Excitation
(SE) block, which performs channel-wise recalibration via
a bottleneck dense layer (256 units) followed by an expan-
sion to 2048 units. This channel attention mechanism enables
dynamic feature weighting, allowing the network to priori-
tize the most informative channels for bone age estimation
and gender classification.

Following the SE block, the recalibrated feature maps
undergo parallel convolutional processing, including dilated
convolutions (dilation rate = 2) to expand the receptive
field without increasing computation. These are encapsulated
within custom convolutional blocks, which include two atten-
tion mechanisms: a Channel Attention block that learns to
emphasize important feature channels using global average
pooling and dense layers and a Spatial Attention block that
localizes salient regions across the spatial dimensions using
convolutional filters. These attention-enhanced paths enable
the model to extract both global and localized discriminative
features.

The outputs of these parallel branches are then integrated
through concatenation, forming a rich, multi-perspective fea-
ture representation. This combined tensor is passed through
a batch normalization layer, a ReLU activation, and dropout
for regularization, followed by a final global average pooling
layer that compresses the spatial dimensions into a compact
vector. This integrated feature vector feeds into two separate
dense heads for bone age regression and gender classifica-
tion, enabling efficient and accurate multi-task learning.

Given that the model is tasked with generating two dis-
tinct predictions from the same input image, it is essential
that it excels in feature extraction while effectively balanc-
ing the unique requirements of each output. This necessitates
a careful consideration of the challenges associated with
multi-output modeling. Specifically, the need for setting
layer conductivities that facilitate effective shared learning
between the two outputs was addressed. The architecture
incorporates a shared backbone that extracts core features
from the radiological images, followed by two separate
branches. Each branch is fine-tuned to optimize performance
for its respective prediction task—one dedicated to bone
age estimation and the other to gender classification. To
ensure stable training, the last 110 layers of InceptionV3 was
fine-tuned while keeping batch normalization layers frozen,
which helps maintain consistent feature distributions and
mitigates internal covariate shifts.

To further enhance the model’s performance, hyper
parameter optimization techniques were implemented to
fine-tune architectural and training parameters. A combina-
tion of manual search and grid-based exploration was used to
iteratively adjust key hyper parameters, including the learn-

ing rate, filter kernel sizes, batch size, number of filters in
convolutional layers, and dropout rates. The search space
was constrained to practical ranges—for instance, learning
rates between le-5 and le-3, kernel sizes of 3x3 and 5x5,
batch sizes of 16, 32, and 64, and dropout rates ranging from
0.1t0 0.5.

The optimization process involved evaluating training and
validation metrics across multiple runs, with each configura-
tion trained for up to 50 epochs using early stopping based
on validation loss (patience = 5 epochs). This allowed for
efficient pruning of suboptimal configurations while avoid-
ing overfitting. In particular, targeted dropout strategies were
refined for each output head: a dropout rate of 0.35 was
applied in the gender classification branch, and 0.2 in the bone
age regression branch. These values were selected based on
repeated experimentation and their observed impact on gen-
eralization, achieving a balance between model capacity and
regularization.

The Huber loss was used for bone age regression, which
is robust to outliers by combining mean squared error (MSE)
and mean absolute error (MAE) as follows:

1o =92, for [y — 9| <8

. g (1)
8- (ly—31—218), forly—3>3

LHuber(y, J) =

where y is the true bone age, y is the predicted bone age, and
§ is a threshold parameter that determines the point at which
the loss transitions from quadratic to linear.

Binary focal crossentropy loss was employed for gender
classification, which modifies standard binary crossentropy
by introducing a focusing factor to reduce the relative impact
of easy-to-classify examples:

Lrocal(p, p) = —a - (1 — p)V - ylog(p)
— (I —a)-p¥-(1—y)log(l - p) 2

where y is the true label (0 for male, 1 for female), p is the
predicted probability, y is the focusing parameter (y = 1.2
in our case), and « is a balancing factor. This loss function
helps the model focus on harder examples, improving clas-
sification performance, particularly in imbalanced datasets.
To stabilize training, we use AdamW as the optimizer, incor-
porating a learning rate of 0.00004, weight decay (0.0003),
and gradient clipping (global norm = 0.3), ensuring efficient
and stable learning dynamics.

By carefully calibrating these architectural enhancements
and optimization strategies, we maximize the predictive
power of our model while ensuring robust performance
across both outputs. The integration of transfer learning,
custom convolutional layers, attention mechanisms, and
carefully tuned hyperparameters allows our model to effec-
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tively handle the complexity of radiological images while
maintaining high generalization capability on unseen data.

To enhance the statistics, the continuous bone age pre-
diction performance was investigated by calculating the
intra-class correlation coefficients (ICCs) and the gender out-
put as the binary categorical data was tested with Cohen’s x
coefficients. The statistical significance threshold was con-
sidered as p=0.05.

Results

In this section, we present the results using detailed graphs
that illustrate the performance of our multi-output model.
The model was trained and evaluated on a system equipped
with a Tesla P100-PCIE GPU, 16 GB VRAM, and 30 GB
RAM. The inference process was optimized for batch pro-
cessing, with a typical inference time of approximately 30
milliseconds per image, enabling near real-time predictions.
These hardware requirements suggest that the model is com-
putationally feasible for deployment on cloud systems with
scalable GPU resources. The bone age branch is evaluated
using MAE and MSE, while the gender branch is assessed
based on accuracy and area under the curve (AUC).

As shown in Fig. 4, after performing inference on the val-
idation dataset over three epochs, the model achieved a MSE
of approximately 25 and a MAE of 3.1 for predicting bone
age. These results indicate strong performance in bone age
prediction. Additionally, the model demonstrated impressive
results in gender classification, achieving an accuracy of 95%

Fig.4 Graph representing the

and an AUC of 97% (Fig.5). These metrics further confirm
the model effective performance across both tasks.

The scatter plot (Fig.6) was examined to further ana-
lyze the model’s performance in predicting bone age, which
visualizes the relationship between the predicted and actual
bone age values. Ideally, a well-performing model should
exhibit points closely aligned along the diagonal, indicating
minimal deviation between predictions and ground truth val-
ues.

According to the results, the scatter plot reveals a strong
correlation, with most predictions clustering around the diag-
onal line. This suggests that the model effectively captures the
underlying patterns in the data. Notably, the model maintains
a consistent trend across the entire age spectrum, including
both lower (< 50 months) and higher (> 180 months) age
ranges. While a slightly wider spread is observed in these
extreme regions, the predictions remain generally centered
around the ideal diagonal line, demonstrating the model’s
ability to generalize even in less-represented age segments.
This performance indicates that the model has successfully
learned critical developmental cues across all ages. Its stable
predictions in both young and older age groups underscore
its robustness and clinical applicability for diverse patient
populations. Despite these small variations, the overall trend
demonstrates that the model generalizes well across differ-
ent age groups, further reinforcing its reliability in bone age
estimation.

The ICC for the bone age prediction was found to be 0.997
(p < 0.001). The Cohen’s « coefficient for the gender pre-
diction was found to be 0.898 (p < 0.001).
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Discussion

The multi-output model with the InceptionV3 architecture
as the backbone performed an accuracy of 95% for the gen-
der predictions and an ICC value of 0.997 (p < 0.001) for
bone age prediction. The concept of computer-aided radio-
graphic bone age and gender estimation has been of interest
to scientists from various disciplines.

In addition to common performance metrics, Cohen’s
kappa and ICC statistics were calculated for the present study.
The kappa coefficient is used to assess the agreement between

Fig.6 Graph shows the scatter

two independent observers’ scores for nominal/categorical
variables. Negative values indicate that the observed agree-
ment is less than that expected from chance alone, while +1
indicates perfect agreement. Several types of kappa coef-
ficients are available. The weighted kappa coefficient can
be used if the magnitude of the difference between raters is
important, while Fleiss kappa is suitable when there are three
or more raters. Since gender information was binary in the
present study, Cohen’s kappa statistic was utilized because if
any, the magnitude of the difference between observers was
equal. On the other hand, ICC is used to the evaluation of
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differences between interval or ratio variables. The purpose
of use is similar to kappa coefficients, is relatively more flex-
ible as the same formula can be used for two or more raters,
and can be used in case of missing variables. In this study,
ICC statistics were used to evaluate the bone age prediction
performance, which is a continuous data type [30].

Several studies are focused on gender estimation. A study
investigated sex estimation with CNN using the patella mag-
netic resonance image slices. The dataset was consisted of
6710 magnetic resonance slices of 696 patients and Efcient-
NetB3, MobileNetV2, Visual Geometry Group 16 (VGG16),
ResNet50, and DenseNet121 architectures were adopted in
model development. A rectified linear unit (ReLU) was used
for activation in convolution layers, while Adamax opti-
mizer was used for model optimization. The researchers
reported the average accuracy of the developed models as
85.70%, while the highest performance was achieved with
the ResNet50 model (88.88%) [31]. In that study, magnetic
resonance imaging of the patella was utilized as a method of
sex determination, whereas in this study, the HWM method
was adopted. While the first method has an advantage in
terms of patient dose due to the absence of ionizing radia-
tion, the need for a magnetic resonance system with special
requirements for image acquisition, which is an important
limitation of the first method. On the other hand, HWRs can
be obtained on-site with mobile X-ray devices in the case

Table 1 A summary of the relevant studies mentioned in the article

of forensic events. In a study investigating the reliability of
VGG16 model for gender prediction using orthopantomo-
graphs (OPGs), 1050 OPGs were included, root mean square
propagation was used as optimizing algorithm, and binary
cross entropy was adopted as loss function. The authors
reported an overall accuracy of 89% for the developed model,
while the F1-scores changed between 0.88 and 0.90, accord-
ing to age and gender of the subgroups [32]. OPGs, used in
that study, are a popular imaging technique in dentistry in
which the complete dental arch and jaw bones are captured
on a planar image in a single rotation. It is a frequently used
technique for radiographic assessment of the overall condi-
tion as a supplement to the clinical examination. However,
the acquisition of images is not as standardized as HWR or
cephalograms, and patient- and operator-related variances
are expected. In this aspect, the imaging modality in the
present study is advantageous in terms of repeatability and
reproducibility compared to the related study. Another study
compared various machine learning classifiers in sex esti-
mation based on combined anatomical measurements of the
long bones. A total of 2141 individuals were included, with
18 measurements recorded from the radius, humerus, femur,
and tibia. Five machine learning classifiers were adopted as
linear discriminant analysis, penalized logistic regression,
random forest, support vector machine, and artificial neural
network. The authors reported the highest accuracy (92%) for

Author, year Data type Sample size Algorithm Assessment Performance
Proposed model Hand-wrist radiographs 14,048 InceptionV3 Multi-Output Bone age & Gender Bone age MAE: 3.1
MAD: 3.33; Gender
accuracy: 95%; Gender
AUC: 97%
Halabi et al., 2018 Hand-wrist radiographs 14,236 Deep learning and CNN- Bone age The best five MAD were
based methods 4.2,44,4.4,45,and 4.5
months
Larson et al., 2017  Hand-wrist radiographs 14,236 + 1377 Deep residual network Bone age MAE of 0.5 year; RMSE:
0.63 and 0.73
Cavlak et al., 2025  Magnetic resonance 6710 EfficientNetB3, Gender Best accuracy of 88.88%
sagittal patella image MobileNetV2, VGG16, (ResNet50)
slices ResNet50, DenseNet121
Pereira et al., 2025  Orthopantomography 1050 VGGl16 Gender Overall accuracy of 89%
Knecht et al., 2023 18 measurements from 2141 LDA, penalized logistic Gender Accuracy: 90-92% (all
4 long bones (radius, regression, random forest, bones), 83.3-90.3% (iso-
humerus, femur, tibia) SVM, ANN lated bones)
Yilmaz et al., 2025  Orthopantomography 1914 17 DL models (Xception, Bone age Polygon area metric of
ResNet, ShuffleNet, Incep- 0.8828
tionV3 etc.)
Matthijs et al., 2024  Panoramic radiographs 4000 DenseNet201 Dental age Accuracy: 0.53, MAE:
0.71, Cohen’s kappa:
0.71,ICC: 0.89
Lietal., 2022 Hand-wrist radiographs 12,611 + 1709 MobileNetV3, MLP (1 hid- Bone age MAE of 6.2 months

den layer)

Note: MAE, mean absolute error; MAD, mean absolute distance; CNN, convolutional neural networks; ICC, intra-class correlation coefficient
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random forest and lowest accuracy (90%) for linear discrim-
inant analysis when all the bone measurements are included.
For the isolated experiments which was based on the mea-
surements of a single bone, the highest accuracy (90.3%) was
reported with humerus bone and random forest algorithm,
while the lowest accuracy (83.3%) was reported for radius
bone and penalized logistic regression algorithm [33]. In that
study, existing numerical anthropometric data were classified
by machine learning without radiographic image acquisition,
whereas in this study, HWR was utilized. The clinical use of
this simple approach, which can be useful in fields such as
archaeology, is limited due to the inability to directly mea-
sure bones or the need for volumetric image acquisition. The
model developed in this study classified 94.93% of the gender
labels correctly. This is slightly higher than previous studies
and provides support for the evidence that the methodology
in this study can be utilized for gender prediction.

Some studies are focused on bone age prediction. In 2019,
a systematic review investigated the studies on bone age
assessment with various machine learning techniques. A total
of 26 studies were included, and regression-based methods
(13 studies) were found to be the most common, followed
by artificial neural networks (eight studies) and support vec-
tor machines (five studies). As a result of the meta-analysis
conducted with seven studies included in the systematic
review, the average performance was determined as 9.96

Fig.7 Figure shows the
model’s performance on real
X-ray radiology

True Bone Age: 168.0
Pred Bone Age: 162.8
True Gender: Male
Pred Gender: Male

True Bone Age: 120.0
Pred Bone Age: 134.2
True Gender: Female
Pred Gender: Female

MAE (months), while it was stated that there were differences
among the age groups in the relevant studies which should
be considered. Moreover, the importance of techniques such
as magnetic resonance imaging that do not require ionizing
radiation was also highlighted by the authors [34].

A study investigated the analysis of whether an individual
in panoramic images is under or over 12 years old by develop-
ing eighteen different machine learning models. Panoramic
radiographs of 1941 pediatric patients between 5 and 15 years
were used in the development of algorithms based on Xcep-
tion, ResNet, ShuffleNet, InceptionV3, DarkNet, NasNet,
DenseNet, EfficientNet, MobileNet, ResNet18, GoogleNet,
SqueezeNet, and AlexNet, and more. The researchers reported
accuracy values between 0.7 and 0.94, with the highest score
obtained using the Forensic Xception model. In addition,
novel polygon area metric values were given, and the high-
est value was again found with the Forensic Xception model
(0.88) [35]. In that study, OPGs were utilized, and age out-
puts were binary categorical as “under and over 12 years of
age,” whereas in the present study, gender output was binary,
but bone age estimates were conducted as a continuous data
type using regression approach.

Another study focused in developing automated models
to analyze the development of all mandibular tooth types and
comparing the models’ performances. The authors adopted
a modified Demirjian staging technique for evaluating the

True Bone Age: 156.0
Pred Bone Age: 157.6
True Gender: Male
Pred Gender: Male

True Bone Age: 82.0
Pred Bone Age: 90.4
True Gender: Female
Pred Gender: Female

JE

True Bone Age: 72.0
Pred Bone Age: 73.4
True Gender: Male
Pred Gender: Male

True Bone Age: 192.0
Pred Bone Age: 181.2
True Gender: Male
Pred Gender: Male
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incisors, canines, premolars, molars, and third molars in
the left side of the mandible. A deep, densely connected
DenseNet201 CNN architecture with 12, 24, 96, and 32 con-
volutional layers was developed, and the authors reported
accuracy values of 0.30, 0.55, 0.51, 0.71, and 0.57 for the
teeth numbers 31, 33, 34, 37, and 38, respectively [36]. In
the relevant study, the dataset was manually segmented into
different types of tooth regions in the mandible in OPGs,
while the model output was categorical data type to pre-
dict tooth developmental stages, not bone age directly. In
the present study, the image features were extracted using
algorithms, and manual segmentation was not performed.
In 2021, a study used the RSNA dataset with an additional
dataset of 1709 samples to develop a deep learning-based
system for bone age assessment. Given the study design,
bounding boxes were first obtained using a CNN model for
object localization. The features clustered according to the
system, MobileNetV3 with pre-trained weights on ImageNet
algorithm as the backbone, are classified with multiple layer
perceptron with one hidden layer model for future bone age
prediction. Gender data was used as an additional input, and
the authors reported a mean absolute error of approximately
6.2 months on the RSNA dataset, and 5.1 months with the
inclusion of the additional dataset [37]. This study used
the same open-source dataset as the current research. In this
study, gender was specified as one of the two outputs in the
model architecture, while in the other research, gender was
used as an additional input. The model designed in this study
was reached toa MAE of 3.1 for predicting bone age, which is
a lower error when compared to the relevant studies. Scatter
plot (Fig. 6) shows the fit of the regression bone age outputs
with the label data, and the distribution may show that the
early ages may be resulted to be older, and this trend reverses
with the increase in age. The algorithms in this study are not
available to end-users and clinicians in an accessible inter-
face. Conversely, providing clinicians with such information
may benefit patients by enabling rational use of relevant sys-
tems. A summary of the relevant studies mentioned in the
article can be found in Table 1. The proposed model fea-
tures an atlas-based bone age analysis with fully automated
approach, while several other studies focusing on specific
bones are also reported [38, 39].

This study has several limitations. First, although the
dataset is composed of data from multiple centers, the dataset
used may not be fully representative of the broader popula-
tion, potentially limiting the generalizability of the results.
In the case of similar data sets from centers in different parts
of the globe, studies on the generalizability of the models or
their optimization for local use can be planned.

Second, the computational complexity of the proposed
model presents a challenge. Due to its deep architecture and
large number of parameters, the model requires significant
computational resources and may be difficult to run effi-

@ Springer

ciently without access to a high-performance GPU. Future
studies can be considered with a simpler architecture and
fewer features to increase model success while reducing the
need for computational sources.

Third, the quality and resolution of the input images may
affect prediction accuracy, especially in cases where images
are noisy or of low resolution. These factors could limit
the model’s applicability in real-time clinical settings or in
resource-constrained environments. Indeed, image artifacts
are a fact of life, and algorithms that feed on multiple data
sources and compensate for each other in terms of lack of
data may be the subject of future studies to overcome this
issue.

Conclusion

In this study, we developed a deep learning-based multi-
output model for automatic bone age prediction and gender
classification. Our model successfully predicts bone age with
a MSE of approximately 25 and a MAE of 3.1. Addition-
ally, it achieves high classification performance for gender,
with an accuracy of 95% and an AUC of 97%. These results
demonstrate that despite the challenges posed by radiograph
quality, our approach achieves robust performance, surpass-
ing existing automated models. As shown in Fig.7, the
model’s performance on real X-ray radiology data further
validates its effectiveness in practical scenarios.
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